• Tentang UGM
  • PIKA UGM
  • Sekolah Vokasi
  • Departemen TEDI
  • Fahmizal Blog
Universitas Gadjah Mada Menara Ilmu Otomasi
Departemen Teknik Elektro dan Informatika
Sekolah Vokasi Universitas Gadjah Mada
  • Beranda
  • Penelitian
    • Control and Automation System
    • Internet of Things (IoT)
    • Deep Learning
    • Robotics
      • Humanoid Robot
      • Self-driving Car Robot
      • Mobile Robot
      • Arm Manipulator Robot
      • Unmanned Aerial Robot
      • Underwater Robot
    • Covid-19
      • Face Shield
      • Ventilator
      • UVD Mobile Robot
      • UVC Box Sterilizer
    • Capstone Project
    • Publikasi
  • Berita
  • Artikel
  • Buku
  • Video
  • Tentang
    • Tim Menara Ilmu
    • Makna Logo
    • Kontak
  • Beranda
  • Deep Learning

Deep Learning

  • 9 October 2018, 10.09
  • Oleh: fahmizal
  • 0

Towards self-driving car using convolutional neural network and road lane detector

Abstract

The advancement of Computer Vision these days has grown up beyond imagination. Recently, many researchers and tech companies are competing to develop self-driving car using either traditional or deep learning approach. YOLO (You Only Look Once) is one of the real-time CNN methods that aims to detect objects from images. On the other hand, Road Lane Detector is used to detect road track from video’s frames and to provide additional information that can be helpful for the decision-making process of the self-driving car. In this paper, we use YOLO as the object detector and polynomial regression as the road guidance in the real-world driving video simulations. We use NVIDIA GTX 1070 with 8 GB of RAM for the computations. The result shows a matching pair between those two methods for self-driving car environment and road lane guidance.

more detail visit our publication here

http://otomasi.sv.ugm.ac.id/wp-content/uploads/sites/361/2018/11/Towards-self-driving-car-using-convolutional-neural-network-and-road-lane-detector.mp4

Self driving car

Recent Posts

  • Rancang Bangun Flight Controller UAV Berbiaya Rendah menggunakan STM32F411 dan GY-87 dengan Integrasi iNAV
  • Implementation of Steering Based Path Following on Prototype Self-driving Car Robot using Pixy2 Vision
  • Prototyping Self-driving Car Robot using Pixy2 Camera and ESP32
  • Simulasi Robot Line Follower berbasis Robot Operating System (ROS)
  • Prototipe Sistem Solar Tracker dengan Monitoring Internet of Things (IoT) berbasis Blynk

Recent Comments

  • Bakti prapdanu on Timer 5 Minutes Circuit Design Using IC NE555
  • Rosyid on Timer 5 Minutes Circuit Design Using IC NE555
  • Milda Nawaksari on Tutorial Labview dengan Arduino
  • Aphithep on Tower Copter With PID Controller
  • Dinie Hakim on Automatic Dump with Arduino Uno
Universitas Gadjah Mada

Departemen Teknik Elektro dan Informatika, Sekolah Vokasi, Universitas Gadjah Mada
Jl. Grafika No. 2 Kampus UGM, Yogyakarta 55281

Penanggung Jawab : Dr. Fahmizal, S.T., M.Sc.

Site: http://fahmizal.staff.ugm.ac.id

Email : fahmizal@ugm.ac.id

 

Recent Comments

  • Bakti prapdanu on Timer 5 Minutes Circuit Design Using IC NE555
  • Rosyid on Timer 5 Minutes Circuit Design Using IC NE555
  • Milda Nawaksari on Tutorial Labview dengan Arduino
  • Aphithep on Tower Copter With PID Controller
  • Dinie Hakim on Automatic Dump with Arduino Uno

© Sekolah Vokasi Universitas Gadjah Mada

KEBIJAKAN PRIVASI/PRIVACY POLICY

[EN] We use cookies to help our viewer get the best experience on our website. -- [ID] Kami menggunakan cookie untuk membantu pengunjung kami mendapatkan pengalaman terbaik di situs web kami.I Agree / Saya Setuju