Deep Learning (Pembelajaran Dalam) atau sering dikenal dengan istilah Pembelajaran Struktural Mendalam (Deep Structured Learning) atau Pembelajaran Hierarki (Hierarchical learning) adalah salah satu cabang dari ilmu pembelajaran mesin (Machine Learning) yang terdiri algoritma pemodelan abstraksi tingkat tinggi pada data menggunakan sekumpulan fungsi transformasi non-linear yang ditata berlapis-lapis dan mendalam. Teknik dan algoritma dalam Pembelaran dalam dapat digunakan baik untuk kebutuhan pembelajaran terarah (supervised learning), pembelajaran tak terarah (unsupervised learning) dan semi-terarah (semi-supervised learning) dalam berbagai aplikasi seperti pengenalan citra, pengenalan suara, klasifikasi teks, dan sebagainya. Deep Learning disebut sebagai Deep (dalam) karena struktur dan jumlah jaringan saraf pada algoritmanya sangat banyak bisa mencapai hingga ratusan lapisan.
Deep Learning adalah salah satu jenis algoritma jaringan saraf tiruan yang menggunakan metadata sebagai input dan mengolahnya menggunakan sejumlah lapisan tersembunyi (hidden layer) transformasi non linier dari data masukan untuk menghitung nilai output. Algortima pada Deep Learning memiliki fitur yang unik yaitu sebuah fitur yang mampu mengekstraksi secara otomatis. Hal ini berarti algoritma yang dimilikinya secara otomatis dapat menangkap fitur yang relevan sebagai keperluan dalam pemecahan suatu masalah. Algortima semacam ini sangat penting dalam sebuah kecerdasan buatan karena mampu mengurangi beban pemrograman dalam memilih fitur yang eksplisit. Dan, algortima ini dapat digunakan untuk memecahkan permasalahan yang perlu pengawasan (supervised), tanpa pengawasan (unsupervised), dan semi terawasi (semi supervised).
Dalam jaringan saraf tiruan tipe Deep Learning setiap lapisan tersembunyi bertanggung jawab untuk melatih serangkaian fitur unik berdasarkan output dari jaringan sebelumnya. Algortima ini akan menjadi semakin komplek dan bersifat abstrak ketika jumlah lapisan tersembunyi (hidden layer) semakin bertambah banyak. Jaringan saraf yang dimiliki oleh Deep Learning terbentuk dari hirarki sederhana dengan beberapa lapisan hingga tingkat tinggi atau banyak lapisan (multi layer). Berdasarkan hal itulah Deep Learning dapat digunakan untuk memecahkan masalah kompleks yang lebih rumit dan terdiri dari sejumlah besar lapisan transformasi non linier.